Материал
из свободной русской энциклопедии «Традиция»
Постоянная сильной гравитации — предполагаемая фундаментальная физическая постоянная, константа сильного гравитационного взаимодействия, действующего на уровне элементарных частиц.
Согласно ньютоновскому закону всемирного тяготения, сила гравитационного притяжения между двумя достаточно массивными материальными точками с гравитационными массами и , находящимися на расстоянии , равна:
Коэффициент пропорциональности в данном выражении называется гравитационная постоянная. В отличие от обычной силы гравитации, на уровне элементарных частиц действует сильная гравитация. Для её описания в формуле для гравитационной силы необходимо заменить на :
Идея сильной гравитации первоначально связывалась с математическим подходом Абдуса Салама при унификации гравитации и квантовой хромодинамики, а сейчас часто используется для обозначения любого исследования, предполагающего гравитацию на уровне частиц как основу сильного взаимодействия.
Имеется несколько способов оценки значения . В предположении, что постоянная сильной гравитации зависит от типа объектов, из взаимодействия двух ядер дейтерия находится, [1] что м3•с–2•кг–1.
На основе
аналогии между адронами и чёрными дырами Керра — Ньюмена
[2] Sivaram, C. и Sinha, K.P, [3] [4] Raut, Usha и Shina, KP [5] приняли значение м3•с–2•кг–1.
Значение постоянной сильной гравитации позволяет оценить величину сильного
спин-торсионного взаимодействия между вращающимися протонами. [6] Mongan написал статью, [7] в которой постоянная сильной
гравитации равна м3•с–2•кг–1. Согласно работам Олдершоу
[8] значение постоянной сильной гравитации равно м3•с–2•кг–1.
Как и у Олдершоу,
постоянная сильной гравитации может быть связана [9] с радиусом
протона ,
массой протона и скоростью света :
м3•с–2•кг–1.
Согласно Tennakone,
который рассматривал электрон и протон как чёрные дыры в сильном гравитационном
поле, постоянная сильной гравитации равна: [10]
м3•с–2•кг–1.
Zane Andrea Quintili находит постоянную сильной гравитации на основе подобия между планковской массой и радиусом, и соответственно массой и радиусом протона: [11]
м3•с–2•кг–1.
Recami с соавторами [12] [13]
определяют постоянную сильной гравитации через массу пиона по формуле:
м3•с–2•кг–1,
где –
постоянная Планка.
Отсюда они выводят константу сильного взаимодействия двух
нуклонов в следующем виде: [14]
,
где обозначает сильный заряд, есть
постоянная Дирака.
Станислав Фисенко с соавторами нашли [15] [16] спектр устойчивых состояний электрона в собственном гравитационном поле (0.511 MeV …0.681 MeV) с помощью постоянной сильной гравитации
м3•с–2•кг–1.
Авторы работы [17] при определении отталкивались от постоянной Ферми, что привело
их к значению м3•с–2•кг–1.
В статье [18] можно найти значение постоянной сильной
гравитации, равное м3•с–2•кг–1.
В 1999 г. Сергей Федосин ввёл значение постоянной сильной гравитации на основе равенства между кулоновской электрической силой и силой гравитации в атоме водорода на радиусе Бора. В единицах СИ это приводит к следующему выражению для значения постоянной сильной гравитации: [19]
м3•с–2•кг–1,
где – элементарный заряд, – число пи, – электрическая постоянная, – масса протона, – масса электрона.
При этом предполагается, что сильная гравитация, как универсальная сила,
действует на вещество нуклонов, адронов, электронов и элементарных частиц
независимо от типа этих частиц. В противоположность этому, в стандартном
подходе считается, что сильное взаимодействие никак не действует на электроны и
другие лептоны.
Малая масса и сильный заряд вещества не позволяют электрону целиком находиться в каком-то малом объёме вблизи ядра, и он приобретает дисковидную осесимметричную форму, ограниченную размером атома. В атоме водорода между ядром и веществом электрона действуют электрические силы притяжения, но они компенсируются силами расталкивания собственного заряда электрона. Остаются центростремительная сила от вращения электрона вокруг ядра, и гравитационное притяжение между массивным ядром и веществом электрона. Отсюда следует равенство действия всех сил, в том числе равенство действия сильной гравитации между массами ядра и электрона с одной стороны, и электрической силы между зарядами ядра и электрона, с другой стороны, позволяющее оценить значение Если есть радиус Бора, то равенство сил даёт:
Постоянная тонкой структуры есть
Так что
Радиус Бора становится равным
где есть орбитальная скорость электронного облака на первом уровне энергии.
Отсюда , а кинетическая энергия электрона с учётом определения постоянной сильной гравитации равна:
где есть потенциальная энергия электрона в электрическом поле ядра атома водорода.
Получается теорема вириала в виде . Находится также полная энергия электрона на первом уровне энергии:
эВ.
С помощью постоянной может быть записано равенство между энергией
покоя протона и половиной потенциальной энергии поля сильной гравитации протона
в виде шара согласно теореме вириала, [20] если считать, что для
протона энергия связи , с точностью до знака равная полной энергии,
становится очень близкой к релятивистской энергии в виде энергии покоя:
где м
есть радиус протона, (в гипотетическом случае однородной плотности
вещества протона должно быть ).
Отсюда следует, что масса нуклонов определяется энергией сильной гравитации в
соответствии с принципом эквивалентности массы
и энергии.
Если предположить, что магнитный момент
протона создаётся за счёт максимального вращения положительного заряда,
распределённого по объёму протона в виде шара, когда центростремительное
ускорение на экваторе становится равным ускорению сильной гравитации, то
формула для магнитного момента имеет вид:
где Дж/Тл
есть магнитный момент протона, (в случае однородной плотности вещества и
заряда протона должно быть ).
Из формул для энергии и
магнитного момента в самосогласованной модели определяется радиус протона. [21]
Постоянная сильной гравитации входит также
в формулу, описывающую сильное взаимодействие
с помощью сильной гравитации и поля кручения
вращающихся частиц. [22] Особенностью эффекта гравитационной индукции является то, что если
два тела вращаются вдоль одной оси и сближаются под действием силы гравитации,
то эти тела будут увеличивать угловую скорость своего вращения. В связи с этим
предполагается, что нуклоны в атомных ядрах вращаются с максимальной скоростью.
Это может объяснить равновесие нуклонов в атомных ядрах как равновесие между
силой притяжения от сильной гравитации и силой от поля кручения (от
гравитомагнитной силы в гравитоэлектромагнетизме).
В частности, константа взаимодействия
равна:
,
где равна 0,26 для взаимодействия двух нуклонов, и
стремится к 1 для частиц с меньшей плотностью вещества.
Константа близка к константе сильного взаимодействия
двух нуклонов в Стандартной модели:
,
где есть константа псевдоскалярного нуклон-пионного взаимодействия.
Постоянная
тонкой структуры есть константа взаимодействия электромагнитного
взаимодействия и может быть записана так:
Связь с
обычной гравитационной константой
Если использовать подобие уровней материи и SPФ-симметрию, то значение можно определить также через коэффициенты подобия и гравитационную постоянную обычной гравитации по формуле:
где , , являются коэффициентами подобия по массе, размерам и скоростям соответственно, для вырожденных квантовых объектов на атомном и звёздном уровнях материи. [19] Степени коэффициентов подобия в данном равенстве соответствуют размерности гравитационной постоянной.
С точки зрения теории бесконечной вложенности материи и теории гравитации Лесажа, наличие двух гравитационных постоянных и показывает различие свойств гравитонов и свойств вещества на разных уровнях материи. [23] [24]
В частности, для постоянной сильной гравитации и обычной гравитационной постоянной можно записать подобные друг другу соотношения, в которых эти постоянные выражаются через соответствующие плотности энергии потоков гравитонов электрогравитационного вакуума и параметры наиболее плотного объекта соответствующего уровня материи: [25]
где Дж/м³ – плотность энергии потоков гравитонов для кубического распределения; м² – сечение взаимодействия заряженных частиц электрогравитационного вакуума (праонов) с нуклонами, которое очень близко по величине к геометрическому сечению нуклона и используется для вычисления электрической постоянной; – масса нуклона; Дж/м³ – плотность энергии потоков гравитонов на уровне звёзд для кубического распределения; м² – сечение взаимодействия гравитонов с нейтронной звездой; кг – масса нейтронной звезды.
На уровне материи праонов должна действовать своя собственная постоянная сильной гравитации . Считая, что коэффициент подобия по скоростям между нуклонным и праонным уровнями материи равен , можно записать:
м3•с–2•кг–1,
где Кл есть заряд праона, кг – масса праона,
– отношение массы протона к массе электрона.