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Abstract

The relativistic theory describes the physics of phenomena more precisely than

classical mechanics. This leads to the fact that an ideal uniform model of a body with

a constant mass density must be replaced by the relativistic uniform model. In the

relativistic model the mass density can be the coordinate function, but it is considered

a constant invariant mass density in the reference frames, associated with the particles

that make up the body. Due to the motion of the particles the e�ective mass density

in the system di�ers from the invariant values, which introduces additional corrections

into the values of the �eld functions and into the system's energy. For the relativistic

uniform system with an invariant mass density the exact expressions are determined

for the potentials and strengths of the gravitational �eld, the energy of particles and

�elds. It is shown that, as in the classical case for bodies with a constant mass density,

in the system with a zero vector potential of the gravitational �eld, the energy of the

particles, associated with the scalar �eld potential, is twice as large in the absolute

value as the energy de�ned by the tensor invariant of the gravitational �eld.
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1 Introduction

Various properties of the relativistic uniform system were discussed earlier in [1�3]. The
purpose of this paper is to de�ne more precisely the results relating to the gravitational
�eld in the framework of the covariant theory of gravitation, to calculate the second-order
corrections and to verify the relations between the energy of the particles in the scalar
gravitational potential and the proper energy of the gravitational �eld.

2 The �eld functions

As a uniform relativistic system the spherical system is considered, which consists of the
particles that can also have the electrical charge. The stability of the system is maintained
by the action of its proper gravitation, the internal pressure �eld and the acceleration �eld
of the particles [4, 5]. The �eld functions are calculated on the assumption that there is no
general rotation of the particles in the system, they move randomly and therefore the total
vector �eld potentials on the average tend to zero. The equation for the gravitational scalar
potential inside the sphere and its solution in the weak �eld limit have the following form [2]:

△ψi = 4πGρ0γ
′, (1)
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In (1) the Lorentz factor of the particles is γ′ = 1√
1−v′2/c2

, v′ is the average velocity of an

arbitrary particle inside the sphere, c is the speed of light, G is the gravitational constant,
ρ0 is the mass density of the particle in the reference frame associated with the particle, the
index i di�erentiates the internal gravitational scalar potential ψi from external potential ψo ,
which is generated by the sphere outside its limits. Both potential ψi and γ

′ are the functions
of the current radius r inside the sphere and do not depend on the angular variables.

The dependence of γ′ on the radius was found in [1]:
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where γc is the Lorentz factor of the particles at the center of the sphere, η is the
acceleration �eld coe�cient.

For the external gravitational potential ψo of the �xed sphere, �lled with moving particles,
we obtain the following:
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The mass m is de�ned as the product of the mass density ρ0 by the sphere's volume Vs .
However, the actual gravitational �eld outside the sphere is de�ned by the mass mb , which
is equal to:
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mb = ρ0
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The mass mb represents the sum of the invariant masses of all the particles in the system,
which is equal to the gravitational mass of the system mg . In view of the de�nition of the
mass mb , from (3) it follows:

ψo = −Gmb
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Since after averaging over a su�cient number of particles, the internal vector gravitational
potential Di and the external vector gravitational potential Do of the system are equal to
zero, the acting gravitational �eld strengths inside and outside the system are actually de�ned
only by the gradient of the corresponding scalar potential. In view of (1) and (3), for the
strengths we obtain the following:
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The torsion �eld, which has the same meaning in the covariant theory of gravitation as
the gravitomagnetic �eld in gravitomagnetism, on the average is equal to zero, both inside
and outside of the system under consideration:

Ωi = ∇×Di = 0, Ωo = ∇×Do = 0. (6)

3 The energy of the particles in the �eld and the energy

of the �eld itself

We will calculate the energy of the particles in the gravitational �eld of the system, in which
the vector potential and the torsion �eld on the average are equal to zero. The energy of the
particles in this case is de�ned as the volume integral taken of the product of the e�ective
mass density inside the sphere ρ = ρ0γ

′ by the internal scalar potential ψi . In view of (1),
(2) we obtain the following:
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We will now calculate the volume integral taken of the tensor invariant of the gravitational
�eld, separately for the �eld inside and outside the sphere. The integral of the tensor invariant
is expressed in terms of the gravitational �eld strength and the torsion �eld:

−
∫

c2

16πG
ΦµνΦ

µν dV =
1

8πG

∫ (
Γ 2 − c2Ω2

)
dV.

This integral part is included in this form in the Hamiltonian of the system and de�nes
there the contribution of the gravitational �eld. Substituting here (4), (5), (6), we �nd:
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4 Conclusions

One of the conclusions in [6] was that the energy of the motionless matter of the uniform
body in the form of a sphere in its proper static gravitational �eld is twice as large in its
absolute value as the energy of the gravitational �eld itself. What will happen, if we turn
into the relativistic uniform system, in which the matter particles are not motionless, but
are moving with the Lorentz factor (2), depending on the current radius? To answer this
question we must sum up the integrals in (8), that is, calculate the integral of the tensor
invariant over the entire volume, occupied by the �eld, and then compare the result with
(7). We obtain the following:
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Hence we see that both in the classical case and in the relativistic case, the relation
between the energy of the particles in the �eld and the energy of the �eld itself remains
unchanged.
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